

IGBT Module

SK 9GD065

Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25$ °C, unless otherwise specified							
Symbol	Conditions		Values	Units			
IGBT							
V_{CES}	T _j = 25 °C		600	V			
I _C	T _j = 125 °C	T _s = 25 °C	11	Α			
		$T_s = 80 ^{\circ}C$	8	Α			
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		12	Α			
V_{GES}			± 20	٧			
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs			
Inverse Diode							
I _F	T _j = 125 °C	$T_s = 25 ^{\circ}C$	22	Α			
		$T_s = 80 ^{\circ}C$	15	Α			
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		30	Α			
Module							
I _{t(RMS)}				Α			
T_{vj}			-40 + 150	°C			
T _{stg}			-40 +12 5	°C			
V _{isol}	AC, 1 min.		2500	V			

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.2 \text{ mA}$		3	4	5	V	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,03	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA	
		T _j = 125 °C				nA	
V_{CE0}		T _i = 25 °C		1,2		V	
		T _j = 125 °C		1,1		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		133		mΩ	
		T _j = 125°C		183		mΩ	
V _{CE(sat)}	I _{Cnom} = 6 A, V _{GE} = 15 V			2	2,5	V	
		$T_j = 125^{\circ}C_{chiplev.}$		2,2	2,7	V	
C _{ies}				0,35		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,038		nF	
C _{res}				0,023		nF	
t _{d(on)}				20		ns	
t _r	R_{Gon} = 120 Ω	$V_{CC} = 300V$		25		ns	
E _{on}		$I_C = 6A$		0,22		mJ	
t _{d(off)}	R_{Goff} = 120 Ω	T _j = 125 °C		145		ns	
t_f		V _{GE} =±15V		25		ns	
E_{off}				0,12		mJ	
R _{th(j-s)}	per IGBT				2,6	K/W	

SK 9GD065

SEMITOP® 2

IGBT Module

SK 9GD065

Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- · CAL technology FWD

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 15 A; V_{GE} = 0 V			1,4	1,7	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,4	1,7	V		
V _{F0}		T _j = 25 °C		1	1,1	V		
		T _j = 125 °C		0,9	1	V		
r _F		T _j = 25 °C		30	40	mΩ		
		T _j = 125 °C		33	47	mΩ		
I _{RRM}	I _F = 15 A	T _i = 125 °C		22		Α		
Q_{rr}	di/dt = 1100 A/μs	•		1,5		μC		
E _{rr}	V _{CC} = 300V			0,31		mJ		
$R_{th(j-s)D}$	per diode				2,3	K/W		
M_s	to heat sink				2	Nm		
w				21		g		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK 9GD065

